organic compounds

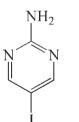
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Iodopyrimidin-2-amine

Yen-Hsun Chiang, Chia-Jun Wu, Pei-Chi Cheng and Jhy-Der Chen*

Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw


Received 18 May 2010; accepted 21 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 11.9.

The molecule of the title compound, $C_4H_4IN_3$, has crystallographic mirror plane symmetry. In the crystal, the molecules are connected through $N-H\cdots N$ hydrogen bonds into polymeric tapes extended along the *a* axis, which are typical of 2-aminopyrimidines. Each molecule acts as a double donor and a double acceptor in the hydrogen bonding.

Related literature

For coordination polymers formed with the title compound, see: Lin *et al.* (2006).

Experimental

Crystal data

 $C_4H_4IN_3$ $M_r = 221.00$ Orthorhombic, *Cmca* a = 7.9088 (7) Å b = 8.3617 (10) Åc = 18.3821 (16) Å $V = 1215.6 (2) \text{ Å}^3$ Z = 8 Mo $K\alpha$ radiation $\mu = 5.16 \text{ mm}^{-1}$

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (XSCANS; Siemens, 1995) $T_{min} = 0.332, T_{max} = 1.000$ 800 measured reflections 573 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.10573 reflections 48 parameters

 Table 1

 Hydrogen hend geometry (Å $^{\circ}$)

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N2-H2N\cdots N1^i$ 0.79 (5)
 2.37 (5)
 3.157 (4)
 173 (6)

 Symmetry code: (i) $-x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$ -z + 1. -z + 1.

T = 295 K

 $R_{\rm int} = 0.032$

reflections

refinement $\Delta \rho_{\text{max}} = 0.93 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.6 \times 0.4 \times 0.2 \ \text{mm}$

535 reflections with $I > 2\sigma(I)$

3 standard reflections every 97

H atoms treated by a mixture of

independent and constrained

intensity decay: none

Data collection: *XSCANS* (Siemens, 1995); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-98-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2275).

References

Lin, C.-Y., Chan, Z.-K., Yeh, C.-W., Wu, C.-J., Chen, J.-D. & Wang, J.-C. (2006). *CrystEngComm*, **8**, 841–846.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2010). E66, o1464 [doi:10.1107/S1600536810019124]

5-Iodopyrimidin-2-amine

Y.-H. Chiang, C.-J. Wu, P.-C. Cheng and J.-D. Chen

Comment

A series of Ag(I) coordination polymers containg 2-amino-5-iodopyrimidine have been prepared, which show metallocycles and one-dimensional helical chains (Lin, *et al.*, 2006). Within this project the crystal structure of 2-amino-5-iodopyrimidine was determined to investigate its weak interactions.

In its crystal structure weak intermolecular N—H…N hydrogen bonding is found (Tab. 1) and the molecules are almost planar (Fig. 1).

Experimental

The title compound was purchased from Acros Chemical Co. and used as received. Coloress plate crystals suitable for X-ray crystallography were obtained by dissolving the title compound in THF, followed by allowing the solution to evaporate slowly under air.

Refinement

The pyrimidyl hydrogen atoms were placed into idealized positions and constrained by the riding atom approximation with C—H = 0.93 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$. The amine hydrogen atoms were located from difference Fourier maps.

Figures

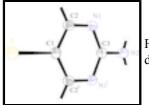


Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.Symmetry codes: (i) -x, y, z.

5-lodopyrimidin-2-amine

Crystal data $C_4H_4IN_3$ $M_r = 221.00$ Orthorhombic, Cmca Hall symbol: -C 2bc 2 a = 7.9088 (7) Å b = 8.3617 (10) Å

F(000) = 816 $D_x = 2.415 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 31 reflections \theta = 4.9-12.6° \tmu = 5.16 mm^{-1}

c = 18.3821 (16) Å	T = 295 K
$V = 1215.6 (2) Å^3$	Plate, colorless
Z = 8	$0.6 \times 0.4 \times 0.2 \text{ mm}$

Data collection

Bruker P4 diffractometer	535 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.032$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -1 \rightarrow 9$
Absorption correction: multi-scan (XSCANS; Siemens, 1995)	$k = -1 \rightarrow 9$
$T_{\min} = 0.332, T_{\max} = 1.000$	$l = -21 \rightarrow 1$
800 measured reflections	3 standard reflections every 97 reflections
573 independent reflections	intensity decay: none

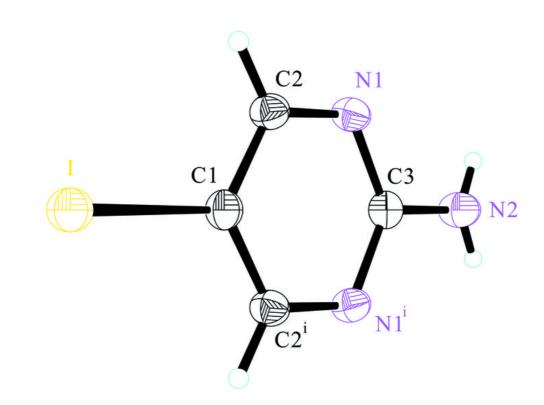
Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2 + 3.1925P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
573 reflections	$\Delta \rho_{max} = 0.93 \text{ e } \text{\AA}^{-3}$
48 parameters	$\Delta \rho_{\rm min} = -0.83 \ e \ {\rm \AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0148 (9)

Special details

Experimental. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.


Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		x	v		Ζ	$U_{\rm iso}^*/U_{\rm eq}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ι	0.0000	0.25315	(4)	0.72128 (2)				
$\begin{array}{ccccccc} C1 & 0.0000 & 0.4412 (6) & 0.6466 (3) & 0.0345 (11) \\ C2 & -0.1488 (5) & 0.5037 (4) & 0.6200 (2) & 0.0367 (9) \\ H2C & -0.2507 & 0.4604 & 0.6358 & 0.044* \\ C3 & 0.0000 & 0.6791 (7) & 0.5508 (3) & 0.0343 (11) \\ H2N & -0.085 (7) & 0.831 (7) & 0.485 (3) & 0.061 (15)* \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	N1	-0.1515 (4)							
$\begin{array}{ccccccc} C1 & 0.0000 & 0.4412 (6) & 0.6466 (3) & 0.0345 (11) \\ C2 & -0.1488 (5) & 0.5037 (4) & 0.6200 (2) & 0.0367 (9) \\ H2C & -0.2507 & 0.4604 & 0.6358 & 0.044* \\ C3 & 0.0000 & 0.6791 (7) & 0.5508 (3) & 0.0343 (11) \\ H2N & -0.085 (7) & 0.831 (7) & 0.485 (3) & 0.061 (15)* \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	N2		0.8038 (
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C1	0.0000	0.4412 (5)	0.6466 (3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	-0.1488 (5)	0.5037 (4	4)	0.6200 (2)	0.0367 (9)			
H2N $-0.085 (7)$ $0.831 (7)$ $0.485 (3)$ $0.061 (15)^*$ Atomic displacement parameters (A^2) L U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} 1 $0.0388 (4)$ $0.0504 (5)$ $0.0495 (5)$ 0.000 0.000 $0.01869 (14)$ N1 $0.0321 (17)$ $0.0427 (17)$ $0.0385 (16)$ 0.001 0.000 $0.011 (13)$ N2 $0.039 (3)$ $0.053 (3)$ $0.045 (3)$ 0.000 0.000 $0.002 (2)$ C1 $0.038 (3)$ $0.035 (2)$ 0.000 0.000 0.000 $0.002 (2)$ C2 $0.0329 (19)$ $0.0406 (19)$ $0.036 (2)$ $-0.0011 (16)$ $0.0016 (15)$ $0.0034 (14)$ Geometric parameters ($A, °$)I—C1 $2.088 (5)$ $N2$ —H2N $0.79 (5)$ N1—C2 $1.331 (4)$ C1—C2 $1.377 (4)$ N1—C2 $1.377 (4)$ N1—C2 $1.346 (10)$ C2—N1—C3 $116.1 (3)$ $N1$ —C2—H2C 118.9 C2—C1—C3 $116.4 (5)$ $N1$ —C3—N1 $125.9 (5)$ C2—C1—C2 $117.4 (5)$ $N1$ —C3—N1 $125.9 (5)$ C2—C1—I D —H H —A D —A D —H—AD—H H —A D —A </td <td>H2C</td> <td>-0.2507</td> <td>0.4604</td> <td></td> <td>0.6358</td> <td>0.044*</td> <td></td>	H2C	-0.2507	0.4604		0.6358	0.044*			
Atomic displacement parameters (\hat{A}^2) U ¹¹ U ²² U ³³ U ¹² U ¹³ U ²³ I 0.0388 (4) 0.0504 (5) 0.000 0.000 0.0006 (1899 (14)) N1 0.0321 (17) 0.0427 (17) 0.0385 (16) 0.0001 (14) 0.0005 (12) 0.0041 (13) N2 0.039 (3) 0.053 (3) 0.045 (3) 0.000 0.000 0.000 0.002 (2) C2 0.0329 (19) 0.0406 (19) 0.036 (2) -0.0011 (16) 0.0016 (15) 0.0034 (14) C3 0.041 (3) 0.035 (3) 0.027 (2) 0.000 0.000 0.000 (2) Geometric parameters (\hat{A} , °) IC1 2.088 (5) N2-H2N 0.79 (5) N1C2 1.331 (4) C1C2 1.377 (4) N1C3 1.346 (4) C2-H2C 0.9300 N2C3 1.346 (10) C2 1.377 (4) C2C1 1.21.3 (2) N1 ⁱ -C3-N1 125.9 (5) C2 ⁱ -C1-C2 117.4 (5) N1 ⁱ -C3-N2 117.0 (2) N1	C3	0.0000	0.6791 (7)	0.5508 (3)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2N	-0.085 (7)	0.831 (7))	0.485 (3)	0.061 (15)*			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ι		0.0504 (5)	-	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							· · · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1					0.000			
Geometric parameters (Å, °) IC1 2.088 (5) N2-H2N 0.79 (5) N1C2 1.331 (4) C1C2 1.377 (4) N1C3 1.346 (4) C2-H2C 0.9300 N2C3 1.346 (10) 0.79 (5) 0.79 (5) C2N1C3 1.346 (10) 0.72-H2C 118.9 C3N2H2N 120 (4) C1C2H2C 118.9 C2 ⁱ -C1-C2 117.4 (5) N1 ⁱ -C3N1 125.9 (5) C2C1I 121.3 (2) N1 ⁱ -C3N2 117.0 (2) N1C2C1 122.2 (4) Symmetry codes: (i) -x, y, z. JDH H···A DH···A M2H2N····N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	C2	0.0329 (19)			-0.0011	(16) 0.0016 (15			
IC1 2.088 (5) N2-H2N 0.79 (5) N1C2 1.331 (4) C1C2 1.377 (4) N1C3 1.346 (4) C2-H2C 0.9300 N2C3 1.346 (10)	C3	0.041 (3)	0.035 (3)	0.027 (2)	0.000	0.000	0.000 (2)		
N1C21.331 (4)C1C21.377 (4)N1C31.346 (4)C2H2C0.9300N2C31.346 (10) $(1-C2-H2C)$ 118.9C2N1C3116.1 (3)N1C2H2C118.9C3N2H2N120 (4)C1C2H2C118.9C2 ⁱ C1C2117.4 (5)N1 ⁱ C3N1125.9 (5)C2C1-I121.3 (2)N1 ⁱ C3N2117.0 (2)N1C2C1122.2 (4)Symmetry codes: (i) -x, y, z. DH Hydrogen-bond geometry (Å, °) DH $H\cdots A$ $D\cdots A$ $DH\cdots A$ N2H2N···N1 ⁱⁱ 0.79 (5)2.37 (5)3.157 (4)173 (6)	Geometric parameters (Å, °)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I—C1		2.088 (5)		N2—H2N				
N2-C3 1.346 (10) C2-N1-C3 116.1 (3) N1-C2-H2C 118.9 C3-N2-H2N 120 (4) C1-C2-H2C 118.9 C2 ⁱ -C1-C2 117.4 (5) N1 ⁱ -C3-N1 125.9 (5) C2-C1-I 121.3 (2) N1 ⁱ -C3-N2 117.0 (2) N1-C2-C1 122.2 (4) Symmetry codes: (i) -x, y, z. $Hydrogen-bond geometry (Å, °)$ D-H···A D-H H···A D···A D-H···A N2-H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	N1—C2		1.331 (4)		C1—C2		1.377 (4)		
C2-N1-C3116.1 (3)N1-C2-H2C118.9C3-N2-H2N120 (4)C1C2-H2C118.9C2 ⁱ -C1-C2117.4 (5)N1 ⁱ -C3-N1125.9 (5)C2-C1-I121.3 (2)N1 ⁱ -C3-N2117.0 (2)N1-C2-C1122.2 (4)Symmetry codes: (i) -x, y, z. $Hydrogen-bond geometry (Å, °)$ D-H···AD-HH···AD···AD-H···AN2-H2N···N1 ⁱⁱ 0.79 (5)2.37 (5)3.157 (4)173 (6)	N1—C3		1.346 (4)		C2—H2C		0.9300		
C3-N2-H2N 120 (4) C1-C2-H2C 118.9 C2 ⁱ -C1-C2 117.4 (5) N1 ⁱ -C3-N1 125.9 (5) C2-C1-I 121.3 (2) N1 ⁱ -C3-N2 117.0 (2) N1-C2-C1 122.2 (4) Symmetry codes: (i) -x, y, z. $Hydrogen-bond geometry (Å, °)$ D-H···A D-H H···A D···A D-H···A N2-H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	N2—C3		1.346 (10)						
$C2^{i}$ — $C1$ — $C2$ $117.4 (5)$ $N1^{i}$ — $C3$ — $N1$ $125.9 (5)$ $C2$ — $C1$ —I $121.3 (2)$ $N1^{i}$ — $C3$ — $N2$ $117.0 (2)$ $N1$ — $C2$ — $C1$ $122.2 (4)$ $122.2 (4)$ Symmetry codes: (i) $-x, y, z.$ D —H $H \cdots A$ D —H $\cdots A$ D —H $D \cdots A$ D —H $\cdots A$ $N2$ — $H2N \cdots N1^{ii}$ $0.79 (5)$ $2.37 (5)$ $3.157 (4)$ $173 (6)$	C2—N1—C3		116.1 (3)		N1—C2—H2C		118.9		
C2—C1—I 121.3 (2) N1 ⁱ —C3—N2 117.0 (2) N1—C2—C1 122.2 (4) 122.2 (4) 122.2 (4) Symmetry codes: (i) $-x, y, z.$ $Hydrogen-bond geometry (Å, °)$ D —H $H \cdots A$ $D \cdots A$ D—H $\cdots A$ D—H $H \cdots A$ $D \cdots A$ D —H $\cdots A$ N2—H2N \cdots N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	C3—N2—H2N		120 (4)		C1—C2—H2C		118.9		
N1—C2—C1 122.2 (4) Symmetry codes: (i) $-x, y, z.$ 122.2 (4) Hydrogen-bond geometry (Å, °) D —H D—H···A D —H N2—H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4)	C2 ⁱ —C1—C2		117.4 (5)		N1 ⁱ —C3—N1		125.9 (5)		
Symmetry codes: (i) $-x, y, z.$ Hydrogen-bond geometry (Å, °) D —H···A D —H H···A D ···A D —H···A N2—H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	C2—C1—I		121.3 (2)		N1 ⁱ —C3—N2		117.0 (2)		
Symmetry codes: (i) $-x, y, z.$ Hydrogen-bond geometry (Å, °) D —H···A D —H H···A D ···A D —H···A N2—H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	N1—C2—C1		122.2 (4)						
D—H···A D —H H···A D ···A D —H···A N2—H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	Symmetry codes	x: (i) $-x, y, z$.							
D—H···A D —H H···A D ···A D —H···A N2—H2N···N1 ⁱⁱ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)									
$N2-H2N\cdots N1^{ii}$ 0.79 (5) 2.37 (5) 3.157 (4) 173 (6)	Hydrogen-bond	d geometry (Å, °)							
	D—H··· A			<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
Symmetry codes: (ii) $-x-1/2$, $-y+3/2$, $-z+1$.	N2—H2N…N1 ⁱⁱ			0.79 (5)	2.37 (5)	3.157 (4)	173 (6)		
	Symmetry codes	x: (ii) $-x-1/2, -y+3/2$							

Fig. 1

